4-dimensional locally CAT(0)-manifolds with no Riemannian smoothings
نویسندگان
چکیده
منابع مشابه
4-dimensional Locally Cat(0)-manifolds with No Riemannian Smoothings
We construct examples of 4-dimensional manifolds M supporting a locally CAT(0)metric, whose universal covers Q M satisfy Hruska’s isolated flats condition, and contain 2-dimensional flats F with the property that @1F Š S ,! S Š @1 Q M are nontrivial knots. As a consequence, we obtain that the group 1.M/ cannot be isomorphic to the fundamental group of any compact Riemannian manifold of nonposit...
متن کاملLocally adaptive density estimation on Riemannian manifolds
In this paper, we consider kernel type estimator with variable bandwidth when the random variables belong in a Riemannian manifolds. We study asymptotic properties such as the consistency and the asymptotic distribution. A simulation study is also considered to evaluate the performance of the proposal. Finally, to illustrate the potential applications of the proposed estimator, we analyse two r...
متن کاملOn Riemannian manifolds endowed with a locally conformal cosymplectic structure
We deal with a locally conformal cosymplectic manifoldM(φ,Ω,ξ,η,g) admitting a conformal contact quasi-torse-forming vector field T . The presymplectic 2-form Ω is a locally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector field. Infinitesimal transformations of the Lie algebra of ∧M are investigated. The Gauss map of the hypersurfaceMξ normal to ξ is conforma...
متن کاملGauge Theories on Four Dimensional Riemannian Manifolds
This paper develops the Riemannian geometry of classical gauge theories Yang-Mills fields coupled with scalar and spinor fields on compact four-dimensional manifolds. Some important properties of these fields are derived from elliptic theory : regularity, an "energy gap theorem", the manifold structure of the configuration space, and a bound for the supremum of the field in terms of the energy....
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2012
ISSN: 0012-7094
DOI: 10.1215/00127094-1507259